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SUMMARY 

This paper develops an integral transient seepage equation that 

includes source terms for both fluid mass generation and undrained 

pore-pressure generation, and their dissipation. The equation should 

lead to increased accuracy for solutions involving integration over 

finite periods of time. 
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ABSTRACT FOR INFORMATION RETRIEVAL 

The seepage equation is subject to two types of source terms. The 

first involves fluid mass generation and the resultant change in fluid 

potential. The second involves pore-pressure generation due to un-

drained response of the system to boundary load changes. Pore-

pressure generation occurs at constant mass content. Since the seepage 

equation describes the drained problem, the inclusion of pore-pressure 

generation in it poses a conceptual difficulty. Also, the potential 

generated by either source will begin dissipating immediately after 

generation. This dissipation is seldom included in the statement of 

the seepage equation. While the omission may be acceptable in a 

differential equation, improved accuracy may demand inclusion of the 

dissipation term in the statement of the seepage problem when one 

wishes to obtain a solution through integration over finite intervals 

of time. Accordingly, a comprehensive equation governing transient 

seepage is developed that includes the two types of sources and their 

dissipation. The implications are examined. 

(KEY WORDS: Seepage Equation; Pore Pressure Generation; Sources; 
Source Terms) 
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Introduction 

In the equation of transient seepage the most frequently 

encountered source term is that which denotes the injection or 

withdrawal of fluid. Inasmuch as the equation of seepage is one of 

mass conservation, there is little difficulty in incorporating this 

type of source in the seepage equation. A second variety of source 

term, not frequently encountered but still of considerable practical 

importance, relates to the generation of pore pressure due to changes 

in the external loads acting on the porous medium. Since there is no 

addition or removal of mass in this case, the incorporation of this 

type of source needs special attention. We will term the injection/ 

withdrawal as a source of the first kind while the pore pressure 

generation shall be referred to as a source of the second kind. 

Furthermore, it is traditional to include the source term 

explicitly as a known quantity in the partial differential equation 

describing transient seepage. Such a treatment of the source term is 

adequate when one seeks to solve the problem analytically for the 

hydraulic head, which varies continuously in space and time. Unlike 

analytic solution techniques, the numerical method of solving the 

transient seepage equation is of a more general nature. The numerical 

solution is basically one of studying the overall system behavior 

(including, among a host of other quantities, the evolution of 

hydraulic head) through the implementation of the mass conservation 

law over finite intervals in space and in time. For purposes of using 

the numerical solutions, therefore, it is desirable to include the 
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source term in the governing equation in a more systematic and detailed 

fashion than has hitherto been done. For example, when one seeks to 

numerically solve the seepage problem over finite time intervals, it 

is pertinent to include within the mathematical description the dissi-

pation of fluid pressure concomitant with its generation. Pore 

pressure generation, in particular, is instantaneously accompanied by 

stepwise changes in skeletal stresses, pore volume and fluid density 

at constant content of fluid mass. These data are essential for a 

complete description of the physical problem as attempted by numerical 

techniques; for, in the general numerical approach, the time-wise 

variations of all these quantities are carefully kept accounted for. 

The purpose of this paper is to state the equation of transient 

seepage in such a fashion that the statement is completely consistent, 

not only in terms of the time derivative of hydraulic head, but also 

in terms of changes in total stress, effective stress, void volume, 

fluid density and the stored fluid mass in an'elemental volume. 

The Transient Seepage Equation 

A simple expression for the transient seepage equation, including 

sources, is as follows: 

• Dl/! 
,~. + g /S + '1/•Cv'IJ,f, = Ot '~'pp w s 'I' 

(1) 
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. 
where ~pp is the rate of generation of pressure head over time due 

to changes in external loads; g is the rate of fluid generation per w 

unit volume of the material; S = y (a + ecw)' the specific storage s w v 

coefficient, in which Yw is unit weight of water, av is the coefficient 

of compressibility, e is the void ratio and cw is the compressibility 

of water; c is the coefficient of consolidation, defined as c = v v 

K(1 + e)/ywav, where K is hydraulic conductivity; ¢ = z + ~' hydraulic 

head, where z is elevation; Vis the gradient operator; and D is the 

total derivative operator for a Lagrangian element. In Eq. 1, the 

total derivative is used with the understanding that the volume element 

of mass conservation has a constant volume of incompressible solids, 

Vs. Since Eq. 1 relates to an infinitestimal time interval, it does 

not include the dissipation of the pore pressures generated as a con-

sequence of the two source terms. The numerical solution of Eq. 1 

implies that its integration over discrete intervals is in space as 

well as in time. We shall now proceed to develop an integral form of 

the seepage equation that is more naturally am~nable to numerical 

solution than Eq. 1. 

Integral Form of the Transient Seepage Equation 

Consider a small volume element of arbitrary shape enclosed by 

the closed surface r£. Let its total stress, effective stress, 

pressure head, fluid density and void ratio be respectively denoted by 

cr£' cr~, ~£' p£ and e£. The volume of fluid contained in this 
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element is VwQ, = VsQ,eQ, where VsQ, is the volume of solids (assumed to be 

incompressible). Let rQ, be divided into m = 1,2,3, ••• M segments, each 

having a surface area ~rQ,m" 

With time, the volume of water contained in the element will be 

changed by three causes. These changes are: a) Those due to hydraulic 

gradients existing at the initial time--~Vw,ic; b) those due to sources 

of the first kind (i.e., fluid injection/withdrawal) and associated 

dissipation--~V . ; and c) those due to the dissipation of pore 
W, lW 

pressures generated by external load changes--~vw,pp" If we consider 

a small interval of time ~t, then: 

M + 

~vw, ic = ~t 2.: KV(z + 1/J)•nt.r Q,m 
m=l 

lit ~1 

( 2) 

~ v . = f Gw n ( t ) d t - ~ t L K \7~ • h ~ r n m • • • • • • • ( 3 ) w,1w 0 N m=l g Nl" 

where~ is the unit outer normal, GwQ, is the time rate of water 

generation from element Q, and ~g is the mean pressure head 

controlling drainage consequent to GwQ,: 

eeeeeoeeeeeeeeoe 

in which 

oeeeeeoeeoeeeeee 

(4) 

(5) 



and 

~:,.V w,pp 

where 

1 6t 
~pp = ~:,.t ~ ~pp(t) dt 

0 

in which 
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Hence, the change in pressure head caused by drained loading is: 

Thus, the drained mass-conservation equation is: 

M 6t 
~:,.t I: Kv(z + ~)·nH + ~ G (t) at 

m=l ,Q,m o w,Q, 

M -+ M 
- e.t El KV~g ·n~:,.r ,Q,m - e.t El KV~PP .rte.r ,Q,m 

( 6) 

( 7) 

(8) 

(9) 

= t.Vwn V S l\~ 
)V s£ s· £,drained (10) 

where t.Vw£ is the change in water volume over element £, and vs,£ 

is the volume of solids in element £. However, the total change in 

pressure head over ~:,.t is equal to the sum of the ~:,.~£,drained and 

6~£,undrained' where: 
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f
t,t • 

~~~,undrained = ~PP = ~ppdt ( 11) 
0 

In view of Eqs. 10 and 11, we may write: 

M M + ] 
- ~t 2: KV~ ·n~r + L KV{z + ~)·n~r~m 

m=1 9 ~m m=1 

= ~~~,drained + 8 ~~,undrained = ~~~ (12) 

Letting M + oo and ~t + 0, Eq. 12 reduces to: 

r_f 
l r ~ 

0~~,drained + 0~~,undrained 
= Dt Dt (13) 

The discretized Eq. 12 and its integral form, Eq. 13, take into account 

both kinds of sources and the associated pore pressure dissipations 

over ~t. 

Let us now proceed to derive the partial differential equation 

for transient seepage from Eq. 13. Noting that by definition the 
+ 

divergence of Darcy velocity q is: 

+ 
1 im l f ++ div q = q·n dr v (14) 
V+o r 

if we let v s ')> 0 in Eq. 13, we get: 
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1 Dl/JSI, 
~ + - [ -d i v K \7~ + G n - d i v K \ll/J + d i v K \7( z + l/J) ] = - 0t ( 15) 

PP ss pp w N g 

If one were to solve Eq. 15 numerically using large ~t, then one has 

to retain, for accuracy, the two divergence terms relating to ~ pp 

and l/Jg. However, one could, as a first-order approximation, ignore 

div KVl/JPP and div KVl/Jg if one were to attempt an analytic solution 

of Eq. 15. In that case, Eq. 15 reduces to the familiar-looking 

expression, 

~ + L G + L K V( z + l/J) •n d r :::: _SI, 

l 
M J Dl/J 

PP \ w Sl, m= 1 Dt 

. 
Even in Eq. 16 the presence of the undrained term l/Jpp introduces a 

dimensionality problem. Thus, note that on the left-hand side of 
. 

Eq. 16, Ss does not divide l/Jpp· Because of the nature of the . 
differential equation, little can be done to express l/J in a more pp 

(16) 

acceptable form. Indeed, if one were to abandon the continuum assump-

tions inherent in the partial differential equation (Eq. 16), then it 
. 

is logically much easier to handle l/Jpp· Thus, if we choose to define 

the initial condition to be that at the start of the discrete interval 
. 

~t. then one may simply add l/Jpp to the initial condition, rather than 

mixing it with the governing equation, which, in fact, deals exclus-

ively with drained conditions of flow. Accordingly, the complete 

statement of the seepage problem in an integral form is as follows: 

For any appropriately small volume element S1, within the flow region, 



10 

-+ -+ 
KVl/J •ndr + G pp w (17) 

Initial Condition 

(18) 

Auxiliary Condition 1 

(19) 

Bound Condit ions 

Boundary conditions are implicit in the three surface integrals on 

the left-hand side of Eq •. 17. Thus, r£= r£,i + r£,b' where r£,i 

is that portion of r£ lying entirely within the flow region and l/J£,b 

is that portion of r£ coinciding with the external boundary of the 

flow region. For r£,b' part of the information needed to evaluate 

the integral is a priori known either in the form of prescribed 

potential conditions, prescribed flux conditions or both (e.g., 

seepage face, free surface). 
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Pore Pressure Generation and Mass Balance 

A discussion of pore pressure generation cannot be complete without 

considering its role in mass balance. Because pore pressure is gener

ated instantaneously in response to external loads, the volume of fluid 

(actually, the mass of fluid) within the element remains constant until 

pore pressure begins to dissipate. Yet, the properties o~, o~, ~~· 

p~, and e~ all change in a stepwise fashion along with the instantan

eous generation of pore pressure. Only the fluid mass content of the 

volume element remains continuous when pore pressure is generated. 

These important consequences are schematically shown in Fig. 1. 

A serious limitation of a differential equation such as Eq. 15 in 

dealing with thick natural systems is that it states the problem purely 

in terms of fluid pressure. Properties such as void ratio are often 

strong functions of effective stress. In thick systems, for example, 

the same pore pressure at two different depths may be associated with 

different values of o, o', p, e and av. Therefore, a knowledge of 

the total stress distribution in such systems, in addition to a knowl

edge of the pressure head distribution, is essential if a realistic 

analysis is to be made. Such information is extremely difficult to 

incorporate into a statement of the differential equation that treats 

hydraulic head and pressure head as continuous functions in space. 

Many realistic field problems lead to such pronounced nonlinearities 

that the numerical approach of using spatially and temporally dis

continuous functions is now widely sought after, in preference to 
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analytic methods of solution. As shown in Eqs. 17 through 19, the 

governing integral equations of these discontinuous systems possess 

great flexibility in accommodating a variety of auxiliary statements 

essential for comprehensive problem statement. With regard to the two 

kinds of source terms already described, Auxiliary Condition 2 is 

needed to reinforce the seepage equation: 

Auxiliary Condition 2 

an ( t
0 

+ t:. t) = a ( t ) + y ~ ~ + ecw) 
N Q_ o w PP\ av (20) 

Practical Implications 

The implication of Eq. 20 is that the total stress for every volume 

element has to be continuously known as the system evolves in time. 

Equations 17 through 20 completely describe the transient seepage 

problem. Implemented faithfully, these equations will make it possible 

not only to follow the evolution of hydraulic head as a function of 

time, as is the case with the classical differential equation, but also 

to follow the evolution of the total and effective stresses, void ratio 

and fluid density as well. 

Furthermore, when the system being studied is a complex one, the 

only logical method of validating the results is to verify whether at 

any given time the set of the fundamental parameters a, a', e and p is 

fully consistent with the law of mass conservation as the system 

gradually evolves with time. In addition to being axiomatically 
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sound, such a validation is extremely desirable from an engineering 

viewpoint because the relationship of the computational problem to the 

real-life physical quantities always remains in focus. 

Conclusion 

In this paper, sources involving the generation of mass are termed 

sources of the first kind. On the other hand, pore pressures generated 

by external loads under constant fluid storage are referred to as 

sources of the second kind. Sources of the second kind lead to step

wise changes in total stress, effective stress, fluid pressure, void 

ratio and fluid density as a function of time. For a comprehensive 

analysis of the transient seepage problem, the evolution of these 

stepwise changes has to be followed in a systematic fashion. These 

changes, however, cannot easily be incorporated in the statement of 

the transient problem as a classical differential equation. Instead, 

it is shown that the problem needs to be stated as an integral equation 

of mass conservation for the drainage phenomenon, reinforced by 

statements of initial, boundary and auxiliary conditions. 
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Appendix I. Notation 

D 

e 

K 

-+ 
n 
-+ 
q 

\ 
t 

at 

avw, ic 

t:.V . 
W, lW 

= 

= 

= 

= 

::::: 

= 

= 

= 

::::: 

:::: 

coefficient of compressibility [LT2/M] 

coefficient of consolidation [L 2/T] 

compressibility of water [LT2/M] 

total derivative operator for a Lagrangian element 

void ratio 

rate of fluid generation per unit volume of material 

[L3;L3T] 

volumetric rate of generation of water from element ~ 

[L 3 /T] 

hydraulic conductivity [L/T] 

volume element 

content of fluid mass = pVw 

unit outer normal 

specific flux or Darcy velocity 

specific storage = y (a + ec ) w v w 

time 

interval of time [T] 

volume of solids [L 3] 

volume of water [L3] 

[1/L] 

change in water volume due to initial conditions [L 3] 

change in water volume due to sources of the first kind 

[L3] 

change in water volume over element~ [L 3] 

change in water volume due to dissipation accompanying 

sources of the second kind 



z 

cr 

~pp 

~pp 
v 

= 

= 
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elevation head [L] 

unit weight of water [M/LT2] 

closed surface bounding element~ [L2] 

mth segment of r~ [L2] 

density of fluid [MtL3] 

total stress [M/LT2] 

effective stress [M/LT2] 

hydraulic head= z + ~ 

pressure head [L] 

pressure head generated over the interval (t ~ t
0

) due 

to sources the first kind [L] 

mean value of ~g over ~t [L] 

pressure head generated over the interval (t - t
0

) due 

to sources of the second kind [L] 

mean value of ~PP over ~t [L] 

rate of generation of ~ [L/G] 

gradient operator 
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FIG. 1--Simultaneous response of a saturated medium to a change in 

external stress and drainage. A stepwise change in external loads, as 

well as a ramplike change in load, is illustrated. (a) Total stress, 

cr; (b) fluid pressure, Yw; (c) effective stress, cr•; (d) void ratio, 

e; (e) fluid density, p; (f) content of fluid mass, M = pV • Note w w 

that only Mw is a fully continuous function of time. 
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